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An estimator-based sliding-mode controller (ESMC) is discussed for a linear stochastic
system with a known disturbance and is utilized in a flexible spacecraft for the reduction of
residual vibration while allowing natural deflection during operation. By converting the
tracking problem into a regulator problem, the ESMC minimizes the expected value of the
guadratic objective function composed of errors which always remain in the intersection of
sliding hypersurfaces. For the numerical evaluation to take place in a flexible with a flexible
spacecraft, a large slewing maneuver strategy is devised, with a tracking model for the
nominal trajectory. A start-coast-stop strategy for an economical maneuver is employed in
conjunction with the input shaping technique. The performance and efficacy of the
proposed control scheme are illustrated with a comparison of different maneuvering
strategies.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In future generations of flexible spacecraft, an appropriate, reliable control system design
will be a challenging problem because of its special dynamic characteristics which include a
large number of significant elastic modes with very small, inherent, damping inaccuracies
in the area of system parameters and non-linear effects. The control methods are related to
multi-input, multi-output (MIMO) configurations. As a result, it is natural to use an
optimal formulation in order to design an effective controller. However, due to the
conditions of a space operation, stringent stability and robustness are required. In order to
satisfy these requirements, many algorithms have been proposed by employing optimal
control, adaptive control, sliding-mode control (SMC), etc.
SMC has been used extensively in robotics [1], in which information is readily available.

Slotine proposed a boundary layer concept to reduce the chattering problem by
introducing a linear function within the switching region. In the application of the SMC
to flexible structures, .OOz and Mostafa [2] investigated switching mechanisms, stability,
interaction with unmodelled dynamics, and the chattering problem with general non-linear
systems. They determined that the chattering issue is not the main obstacle of the
application to the SMC, but found that truncation effects are problematic. Young and
.OOzguner [3] combined the SMC with a frequency weighted optimal formulation [4] to
reduce the chattering due to rapid switching logic. Sinha and Miller [5] proposed an
optimal SMC with a Kalman filter to reject stochastic broadband torque disturbances. As
a matter of fact, Utkin initially developed SMCs for multi-variable cases by making the
optimal cost functional. It is possible to combine the SMC with an estimator, as long as
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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state estimation is asymptotically convergent to the true states [6]. However, an estimator-
based SMC has not been adequately addressed or discussed.
In this paper, an estimator-based sliding-mode controller (ESMC) is initially presented

for a linear stochastic system with known disturbances. In the following sections, an
analysis of the dynamics of a closed-loop system is discussed, as well as the constant
optimal gain selection of hypersurfaces. The robustness and interaction by unmodelled
dynamics is also considered. Secondly, in the numerical application of the ESMC to the
Spacecraft Control Laboratory Experiment (SCOLE) model, a tracking model is
presented with an arbitrary influence vector, which is chosen by the control system
designer. A maneuvering strategy is discussed for efficient control implementation in
conjunction with an input shaping technique. In the worst case scenario for the control
scheme, the extreme case, with no damping effect, is discussed relative to the performance
of the ESMC.

2. ESTIMATOR-BASED SLIDING-MODE CONTROLLER

Consider a linear stochastic system with such known disturbances

’zzðtÞ ¼ A zðtÞ þ B uðtÞ þ L wðtÞ þ DðtÞ; ð1Þ

yðtÞ ¼ C zðtÞ þ vðtÞ ð2Þ

where the state vector is zðtÞ 2 Rk; the input vector is uðtÞ 2 Rm; and the output vector is
yðtÞ 2 Rl : DðtÞ contains known disturbances which can be non-linear functions. It is
assumed that ðA;BÞ and ðA;CÞ are controllable and observable respectively. The plant
disturbance vector wðtÞ and the sensor noise vector vðtÞ contain independent white-noise
processes with a zero mean, as their elements. Their covariance matrices can be defined as

E½wðtÞ wðtÞT� ¼ Q dðt � tÞ; ð3Þ

E½vðtÞ vðtÞT� ¼ R dðt � tÞ; ð4Þ

where dðt � tÞ is the Dirac delta function.
The estimator dynamics for state estimation can be expressed as

’#zz#zzðtÞ ¼ A #zzðtÞ þ B uðtÞ þ DðtÞ þ Kf ½yðtÞ � C #zzðtÞ�; ð5Þ

where the Kalman gain Kf is obtained by

Kf ¼ P CTR�1; ð6Þ

’PP ¼ P AT þ AP þ Q � PCT R�1 CP: ð7Þ

If the prescribed configuration vector znðtÞ is considered, the configuration error vector
can be expressed as

zeðtÞ ¼ #zzðtÞ � znðtÞ: ð8Þ

Introducing #zzðtÞ ¼ zeðtÞ þ znðtÞ into equation (5), the error dynamics are expressed in
terms of the error state vector xeðtÞ:

’zzeðtÞ ¼ A zeðtÞ þ B uðtÞ þ DðtÞ þ Kf ½yðtÞ � C zeðtÞ � � ’zznðtÞ: ð9Þ

The m hypersurfaces, passing through the origin of the error state space, are defined as

siðtÞ ¼ gTi zeðtÞ; i ¼ 1; 2; . . . ; m: ð10Þ
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The control consists of a reaching phase, in which the system moves from its initial position
in the state space to the sliding surface, and a sliding phase, in which it moves along the
sliding surface to the origin. The sliding surface attractivity condition is typically defined as

siðtÞ ’ssiðtÞ40; i ¼ 1; 2; . . . ; m: ð11Þ

The attractivity condition and the error dynamics equation (9) yield the equivalent
controller, defined as the solution of ’ssiðtÞ ¼ 0; ði ¼ 1; 2; . . . ; mÞ:

ueqðtÞ ¼ �ðGBÞ�1G½ðA � Kf CÞ #zzðtÞ þ Kf yðtÞ þ DðtÞ � ’zznðtÞ�; ð12Þ

where G ¼ ½g1; g2; . . . ; gm�: From equation (10), the sliding surface is written as
SðtÞ ¼ G zeðtÞ; ð13Þ

where SðtÞ ¼ ½s1ðtÞ; s2ðtÞ; . . . ; smðtÞ�T:
In fact, the equivalent control is an ideal sliding motion where Sð0Þ ¼ 0: In order to

satisfy the reaching conditions, a switching logic is used for the realization of a smooth
sliding motion. In practice, it can be approximated by the reaching dynamics that
arbitrarily close within the limitations of the control switching devices, which are related to
an infinite switching frequency of controls approximate to the ideal sliding motion. As a
result, the switching logic becomes a non-ideal sliding motion which results in a chattering
motion phenomenon. In the practical applications of the classical SMC for controlling
flexible systems, the chatter phenomenon can excite the unmodelled flexible modes. In this
paper, a global asymptotic reaching technique [7] is employed to guarantee convergence
without experiencing an overshooting problem in the sliding region, so that the overall
maneuver is accomplished in a smooth manner. The control law is chosen as

uðtÞ ¼ ueqðtÞ � ðGBÞ�1PsSðtÞ; ð14Þ

where Ps ¼ nIm	m is selected. As a result, using equations (12)–(14), the estimator-based
sliding-mode control law is expressed as

uðtÞ ¼ � ðGBÞ�1½GðA � Kf CÞ #zzðtÞ þ PsGzeðtÞ
þ GKf yðtÞ þ GDðtÞ � G ’zznðtÞ�: ð15Þ

Take note that the control law includes direct feedback of the output, the estimated states,
and the tracking trajectory.

3. ANALYSIS AND GAIN SELECTION OF THE ESMC

In this section, the dynamics in the closed-loop control system are investigated. Next,
the optimal gain selection of the sliding hypersurface is discussed. Lastly, robustness is
considered for chattering circumstance.

3.1. DYNAMICS OF THE CLOSED-LOOP SYSTEM

The behavior of the closed-loop system and estimator can be understood by defining the
estimation error.

%zzðtÞ ¼ zðtÞ � #zzðtÞ: ð16Þ

Using equations (1) and (5), the error dynamics are expressed as

’%zz%zzðtÞ ¼ ðA � Kf CÞ %zzðtÞ þ L wðtÞ � Kf vðtÞ: ð17Þ



Y.-G. SUNG158
In terms of %zz; equation (15) can be written as

uðtÞ ¼ � ðG BÞ�1½fGðA � Kf CÞ þ G Kf C � Ps Gg zðtÞ � fGðA � Kf CÞ
� PsGg %zzðtÞ þ G Kf vðtÞ þ G D þ Ps G znðtÞ � G ’zznðtÞ�: ð18Þ

Substituting equation (18) for equation (1), the closed-loop dynamics can be expressed as

’zzðtÞ ¼ ½A � O A � BðG BÞ�1Ps GÞ� zðtÞ þ ½OðA � Kf CÞ � BðG BÞ�1Ps G� %zzðtÞ
þ LwðtÞ � O Kf vðtÞ � BðG BÞ�1 Ps G znðtÞ þ O ’zznðtÞ; ð19Þ

where O ¼ BðGBÞ�1G: The closed-loop dynamics are driven by estimation error, noises,
and tracking commands. Now, the augmented system of equations (17) and(19) is given as

’zzðtÞ
’%zz%zzðtÞ

( )
¼

A � O A þ G O ðA � Kf CÞ � G

0 A � Kf C

" #
zðtÞ
%zzðtÞ

( )

þ
L �O Kf

L �Kf

" #
wðtÞ
vðtÞ

( )
þ

�G xnðtÞ þ O ’zznðtÞ
0

( )
; ð20Þ

where G ¼ B ðG BÞ�1 Ps G: Since the augmented system is a block triangular, the eigenvalues
are those of A � OA þ G and A � Kf C: It is shown that A � OA þ G is the closed-loop plant
matrix for the full-state feedback problem. As a result, the eigenvalue separation principle
holds so that the controller and estimator can be independently designed.

Lemma 3.1. The m eigenvalues of A � OA þ BðGBÞ�1PsGÞ are decided by the �Ps matrix

and the remaining k � m eigenvalues can be arbitrarily placed in the S-plane by a

proper selection of G, since the system (A,B) is controllable.

The proof of Lemma 3.1 can be presented in the manner of reference [6]. Let the
columns of matrix Q1 consist of the basis vectors of the null space of BT: The coordinate
transformation is defined by

ZðtÞ ¼ M zeðtÞ; ð21Þ
where the matrix M is composed as

M ¼
Q1

B

" #
: ð22Þ

By substituting equation (21) for equation (1) and ignoring noises, the transformed
equation can be expressed as

’ZZðtÞ ¼ %AA ZðtÞ þ %BB uðtÞ þ %DD; ð23Þ
where

%AA ¼MAM�1;

%BB ¼MB;

%DD ¼MD: ð24Þ
Since the matrix M consists of the orthogonal basis of BT; the first k � m rows of %BB are
zeroes. Therefore, the vector ZðtÞ is partitioned, such that, Z1ðtÞ is k � m vector and Z2ðtÞ is
m vector. The partitioned dynamic equation can be presented as

’ZZ1ðtÞ ¼ A11Z1ðtÞ þ A12 Z2ðtÞ þ D1ðtÞ; ð25Þ

’ZZ2ðtÞ ¼ A21 Z1ðtÞ þ A22 Z2ðtÞ þ Br uðtÞ þ D2ðtÞ: ð26Þ



ESTIMATOR-BASED SLIDING-MODE CONTROL 159
Then, SðtÞ can be written as
%SSðtÞ ¼ Z2ðtÞ þ Ks Z1ðtÞ: ð27Þ

For the full-state feedback problem, the gain G is obtained by equating equation (13) with
%SS as

G ¼ Ks; Im
� �

M: ð28Þ
Substituting equation (27) for equation (25) and using the global reaching technique [2],
the system dynamics for the full-state feedback problem can be expressed as

’ZZ1ðtÞ
’%SS%SSðtÞ

( )
¼

A11 � A12Ks A12

0 �Ps

" #
Z1ðtÞ
%SSðtÞ

( )
þ

D1ðtÞ
0m	1

" #
: ð29Þ

Since the closed-loop system matrix for the full-state feedback problem is A � OA þ
BðGBÞ�1PsG and the eigenvalues remain unchanged under the similarity transformation,
the eigenvalues of A � OA þ BðGBÞ�1PsG are k � m eigenvalues from A11 � A12Ks and m

eigenvalues from �Ps: When the sliding surface, Z2 ¼ �KsZ1 eigenvalues of A11 � A12Ks

can be arbitrarily placed in the S plane by a proper selection of Ks [6]. In an analysis of the
closed-loop dynamics, the feedback term for the attitude control is not considered due to
the negligible coordinate.

3.2. OPTIMAL GAIN OF SLIDING HYPERSURFACES

As implied in the derivation of the control law, the tracking problem is reduced to a
regulator problem with full-state feedback by taking zeðtÞ ¼ #zzðtÞ � znðtÞ: The idea can be
used in the decision of the matrix G; which minimizes the quadratic objective function:

J ¼
Z 1

0

zTe ðtÞ Qs zeðtÞ dt; ð30Þ

where Qs is symmetric and positive semidefinite. Using equation (21),

J ¼
Z 1

0

ZTðtÞðM�1ÞTQsM
�1ZðtÞ dt: ð31Þ

With the property of similarity transformation, the matrix ðM�1ÞTQsM
�1; which is

symmetric and positive semidefinite, it is defined as

ðM�1ÞT Qs M�1 ¼
Q1 N

NT R

" #
: ð32Þ

Hence, the performance index can be expressed as

J ¼
Z 1

0

ðZT1 ðtÞ Q1 Z1ðtÞ þ ZT2 ðtÞRZ2ðtÞ þ 2 ZT1 ðtÞNZ2ðtÞÞ dt: ð33Þ

As a standard linear quadratic problem equation (33), the optimal feedback gain matrix [8]
is written as

Ks ¼ ðRÞ�1 ½AT12; P2 þ NT �; ð34Þ

where

0 ¼P2 ðA11 � A12 R�1 NTÞ þ ðAT11 � N R�1 AT12Þ P2�
P2 A12 R�1 AT12 P2 þ Q1 � N R�1 NT: ð35Þ

The optimal gain G is obtained by substituting equation (34) for equation (28).
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However, there is a question as to whether or not the choice of G minimizes the
stochastic objective function, similar to the deterministic case. As long as the objective
function meets the linear quadratic Gaussian problem, the optimality of J in a stochastic
sense [9] is guaranteed.

3.3. ROBUSTNESS OF REACHING DYNAMICS

Due to the chattering issue of the sliding-mode controller, the controller utilizes the
globally asymptotic reaching technique, based on an ideal linear model. In order to
evaluate the robustness of the technique in the presence of non-ideal effects, such as
parameter uncertainties, time-varying dynamics, and internal or external disturbances, one
can make sure that the ideal sliding surface is guaranteed.
Equation (1) with non-ideal effects can be expressed as

’zzðtÞ ¼ A zðtÞ þ B uðtÞ þ Df ; ð36Þ

where Df accounts for all non-ideal effects. If a controller is designed with a linear
dynamic model using the globally asymptotic reaching technique, the control law can be
stated as

uðtÞ ¼ �ðGBÞ�1½ PsG þ GA� zðtÞ: ð37Þ

Now, if the control law is applied to equation (36), the reaching condition can be written as

STðtÞ ’SSðtÞ ¼ ðG zðtÞÞT
G A zðtÞ þ G B uðtÞ þ G Df½ �

¼ ðG zðtÞÞT �Ps G þ G Df½ �: ð38Þ

The reaching dynamics can be expressed as

’SSðtÞ ¼ �Ps SðtÞ þ GDf : ð39Þ

Therefore, the reaching dynamics is stable with Df since Ps > 0: The steady-state solution
of equation (39) can be expressed as

Sss ¼
Z t

0

e�Psðt�tÞ G Df dt: ð40Þ

Hence, due to non-ideal effects, there is a steady state error as t ! 1; so that it cannot
reach an equilibrium point. As a rule of thumb in the sliding-mode controller design, it is
possible to compensate for the error by a large matrix Ps [2].

4. APPLICATION TO THE SCOLE MODEL

The SCOLE system is shown in Figure 1 to present the bending and linear functions of
axial and torsional deformations. A set of simultaneous non-linear ordinary differential
equations can be found in reference [10]. By using a perturbation approach, the equations
are separated into a set of equations for rigid-body motions, representing zero order
effects, and a set of equations for small elastic motions and deviations from the rigid-body
motions, representing first order effects. The approach in reference [10] permits a
maneuvering strategy that is independent of deflection control. Based on the formulation,
a control scheme in Figure 2 is designed using the ESMC.
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Figure 1. Spacecraft Control Laboratory Experiment configuration.

ESTIMATOR-BASED SLIDING-MODE CONTROL 161
4.1. ELASTIC TRACKING MODEL

A tracking model is presented to generate the desired elastic states so that a natural
deflection of the system is experienced. The structural equation of the SCOLE mast, for
which the state estimator is designed, with the assumption of direct measurement of the
rigid-body states, can be written as

.%zz%zzf þ Cff
’%zz%zzf þ Kff %zzf ¼ Ff � Dsð%zzr; %zzf ; ’%zz%zzr; ’%zz%zzf Þ; ð41Þ

where Dsð%zzr; %zzf ; ’%zz%zzr; ’%zz%zzf Þ is considered as a disturbance term, which includes stiffening,
gyroscopic, and coupled terms and the subscripts r and f stand for rigid- and flexible-body
respectively.
The tracking model can be obtained from equation (41) by excluding time-varying

matrices and internal forces, so that the tracking model provides ideal elastic states for the
controller. It serves as a nominal linear trajectory for the flexible-body dynamics. Using
modal analysis, transformation between the tracking model and equation (41) is obtained
by

%zzf ðtÞ ¼ TzdðtÞ; ð42Þ

where T 2 Ri	i is a set of eigenvectors. The tracking model is expressed as

.zdzdðtÞ þ 2 zon ’zdzdðtÞ þ o2n zdðtÞ ¼ �m T�1 Ae
.yy; ð43Þ



Figure 2. The closed-loop control system.
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where Ae is defined as an influence matrix, obtained by the terms of equation (41)
associated with .yy; which will be the designed angular acceleration element in the numerical
evaluation. The z and on are the damping coefficient and the natural frequency
respectively. Hence, the right-hand side [11] of equation (43) is considered as a tangential
force associated with the desired angular displacement. The m is a scaling factor, which can
be used in the case of a high angular velocity maneuver, in order to operate the system
within either an elastic range or a small deflection circumstance. The tracking model
equation (43) is employed for generations of desired elastic states.

4.2. START-COAST-STOP MANEUVER STRATEGY

In a rigid-body-like maneuver with zero order perturbation, each moment along the
x0y0z0 axes of the zero order perturbed moment M0 desired to produce a rigid-body
rotation about the 1 axis (not necessarily a principal axis) is expressed as

M01 ¼ I11 .yy; ð44Þ

M02 ¼ I21 .yy� I31 ’yy 2; ð45Þ

M03 ¼ I31 .yyþ I21 ’yy 2; ð46Þ

where y is the desired angular displacement. The inertia moments [12] in the above
equations are the elements of I0; the mass moment of inertia, in relationship to the
rotational axis. These moments are applied to the SCOLE to perform the slewing
maneuver with respect to one axis. Instead of optimal formulation [11, 13] in order to
minimize either operational time or fuel or both, which lead to solutions for two-point
boundary problems, a simple operation is employed and targeted towards the reduction of
operational time and fuel consumption. In this paper, the torque command input
M01 ¼ ucðtÞ for a roll maneuver around an x0-axis in the paper used in conjunction with
the input shaping technique is expressed as

uc ¼
Tamp sin

2 Ot if t � t0 ¼ p
O

0 otherwise;

(
ð47Þ
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where Tamp is the torque magnitude and O is the period of the torque input profile. The
input profile is used for start and stop motions. During the coasting period, no additional
input is required except for control input to treat disturbances. The smooth input profile is
selected because an excitation of high-frequency modes should be reduced during the
transient period.
In order to accurately arrive at the desired final angle of the roll maneuver,

an analytical solution for intermediate time interval is needed. By taking a time
integration of equation (44) with equation (47), the desired coasting angular velocity is
given as

’yyc ¼
Tamp

I11

t0

2
� sin 2t0

4

� 	
; ð48Þ

where ’yyc is the coasting angular velocity of ’yy: If the desired final angle yf is given, the
coasting time interval, tc; can be stated as

tc ¼ t0 þ
yf

’ycyc

: ð49Þ

4.3. INPUT SHAPING

With the tracking model used to generate the desired states for the ESMC, the input
shaping technique [14] is employed to provide the residual vibration-free states after the
end of input in an open-loop manner. As an idea, the system to be controlled is allowed to
vibrate for a one half period of time in the lowest mode. It is not necessary that the system
should be held firmly to suppress the vibration of the flexible structure in the case of the
rest-to-rest maneuver. With two-impulse sequences, the shaped input us of the desired
input uðtÞ can be written as

usðtÞ ¼ A1uðtÞ þ A2uðt � DTÞ ð50Þ

in which

A1 ¼
1

1þ Kp

;

A2 ¼
Kp

1þ Kp

;

Kp ¼ e
� zpffiffiffiffiffiffiffiffi

1�z2
p

;

DT ¼ p

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ;

where on and z are the vibration modal frequency and damping, respectively, of a second
order modal equation. This function as a true maneuver input is applied to the tracking
model and the shuttle operation of the SCOLE system for a large angle maneuver.

4.4. NUMERICAL SIMULATION

The full order model, 84 degrees of freedom, is reduced to 12 degrees of freedom
including the six rigid-body modes by using the frequency-dependent Krylov vectors [15]
to design the ESMC. The full order proportional damping formula used is Cf ¼
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a Mf þ b Kf where a ¼ b ¼ 0�005 is selected, but knowing that the damping factor of space
structures is very small. Mf and Kf are the constant mass and stiffness matrices of the
SCOLE model with zeroing the terms of rigid-body modes. A discussion of the zero
damping case will be discussed at this end of the section. The first and second natural
frequencies of the mast are 0�9563 and 1�0221 Hz; respectively.
For the application of the ESMC to the SCOLE model, equation (15) is expressed with

the assumption of the measurable rigid-body states as

uðtÞ ¼ � ðGBÞ�1½GðA � Kf CÞ #zzðtÞ þ PsGzeðtÞ
þ kGzreðtÞ þ GKf yðtÞ þ GDðtÞ � G ’zznðtÞ�; ð51Þ

where the attitude error feedback term k G zreðtÞ is introduced which will be necessary for
the shuttle control. zreðtÞ is only the rigid-body state error.
There are three torque and three force actuators applied to the shuttle control. The three

torque wheels are mounted on the mast-tip to control vibration. In this study, it is assumed
that the measured variables are y; ’yy; x; and ’xx of the shuttle. The state variables of the mast
with respect to the shuttle are estimated by the Kalman filter using three displacement
(x; y; and z) and three velocity ( ’xx; ’yy; and ’zz) sensors mounted on the mast-tip. The
configuration of the actuators and sensors is collocated at both the shuttle and the mast-
tip.
Several design parameters are tabulated in Table 1 for the estimator-based sliding-mode

controller. The optimal weighting matrix is selected as

Qs ¼
rrI

6	6 0

0 rf o
2
i

" #
; ð52Þ

where i ¼ 1; . . . ; i and i is the same as the order of the estimator. For the state estima-
tion, it is initially assumed that the disturbances caused primarily by tangential and
centrifugal forces are known in the controller and estimator designs. In the stage of
evaluating the performance of the estimator-based sliding-mode controller, the
disturbance terms are dropped in both the controller and estimator, but the time-varying
effects of the system matrices such as stiffening and gyroscopic terms remain only in the
estimator dynamics. In the case of slower angular motion, the stiffening and gyroscopic
effects are smaller.
The influence term of the tracking model in equation (43) adopted a tangential force

which can provide the effect for angular acceleration of the shuttle in the specific
application to the SCOLE model. Of course, the influence term depends on the specific
problem such that a designer could select a different one. During the numerical simulation,
the first two modes are most significantly excited by the shaped input command in an
Table 1

Design parameters for the controller and estimator

Rigid-body feedback coefficient, k 1000
Global reaching coefficient, n 20
Rigid-body weighting coefficient, rr 20000
Elastic weighting coefficient, rf 1
Process noise intensity, Qp 1�0	 10�3I i	i m
Measurement noise intensity, Qm 1�0	 10�4I i	i m
Open-loop torque period, O 4�0 rad/s
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open-loop manner. In order to obtain no residual vibration, the second mode frequency of
the tracking model is replaced with the first mode frequency because only the first mode is
used for shaping the input. Therefore, the tracking model does generate four non-zero
states and maintains the remaining states at zero.
The desired input command is shaped by a two-impulse sequence. Of course,

more impulses can be used for the increment of robustness as well as the reduction of
residual vibration. However, the control suffers from a longer operational time.
Furthermore, there is a drawback of the input shaping technique in an on-line
implementation of the multiple impulse sequence. It is difficult to design the amplitudes
of the second impulse, the third impulse, and so on according to the estimated
natural frequencies. For example, Tzes [16] used only a two-impulse sequence for the
application of a single link arm to select a payload by estimating the first natural frequency
in the frequency domain. In this paper, the on-line operation of the input shaping
technique is not implemented. However, it is used to provide a faster operation, more
efficient maneuvering, and a more reliable controller in a realistic and problematic
circumstance.
All computations and plots shown in the paper were performed on an IBM RISC 6000

Workstation. The control schematic diagram which indicates the interactions between the
commands, the ideal model, the sliding-mode controller, the SCOLE simulation, and the
state estimation is shown in Figure 2. In the numerical simulation, four cases are
compared from the aspect of antenna deflections and rotations. The four cases are as
follows:

1. Tracking control (a) requires that most non-ideal effects are assumed to be known for
the design of the ESMC and the time-varying Kalman filter. However, the ESMC does
not include time-varying effects such as stiffening and gyroscopic terms. The ESMC
attempts to follow the states of the ideal tracking model. The control efficiency is
demonstrated in this case.

2. Tracking control (b) allows the most significant disturbances in the slewing maneuver to
be dropped in the ESMC design and the time-varying Kalman filter to be dropped out
of the tracking control (a) case. The disturbances are the tangential and centrifugal
forces. The ESMC again tracks the states of the ideal tracking model. The robustness of
the ESMC is illustrated in this case.

3. Open-loop control states that neither the ESMC nor the Kalman filter are involved. The
input shaping technique is used to evaluate the performance with only a two-impulse
sequence.

4. Rigid-body control says that the ideal tracking model is not used. The ESMC attempts
to hold the flexible mast like a rigid body.

In all four cases, the input command has a magnitude Tamp ¼ 20 lbftð2�7651 kgfm ) as
shown in Figure 3 and it is shaped by a two-impulse sequence and then is applied to the
shuttle for a 308 roll maneuver. The estimator-based sliding-mode controller is charged
with rejecting perturbations during the entire slewing motion. The desired motion of the
shuttle is shown in Figure 4 with the maximum velocity being around 68=s:
The main control objective of the SCOLE model is to aim the antenna within a certain

tolerance 0�028 in a short period of time. Hence, plots of the antenna rotations versus time
are presented. Figures 5–7 illustrate the instantaneous antenna rotations with respect to
x0y0z0 axes respectively. The figures show the responses produced during the maneuver
with all four of the control techniques. The effect of the tangential and centrifugal terms in
the controller and estimator, in the case of tracking control (b), shows more angular
displacement and it takes a longer period of time than does one of the tracking control (a)
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Figure 3. Command inputs for a 308 roll maneuver.
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Figure 4. The maneuver strategy of the shuttle for a 308 roll maneuver.
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to settle down the oscillatory deflection because the ESMC is employing a globally
asymptotic reaching technique [7] as opposed to a rapid switching technique. Nevertheless,
it does eventually and quickly damp out the residual oscillatory deflection of all axes in the
presence of modelling errors in the tracking control (a).
The equation of control effort (C:E:) for Figures 8 and 9 is defined as

C:E: ¼
Z 1

0

uðtÞTuðtÞ dt: ð53Þ
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Figure 5. Antenna rotation at x0 during a 308 maneuver.
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Figure 6. Antenna rotation at y0 during a 308 maneuver.
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The case of the rigid-body control is not very effective in controlling vibrations compared
to the tracking control (a). The tracking control (b) requires more control effort than the
other two cases. After 6 s, the tracking control (b) continuously consumes energy in order
to damp out residual vibrations. The tracking control (a) required the least amount of
control effort and is able to accomplish the 308 maneuver. The control effort for the entire
system’s operation in the tracking control (a) is a small quantity below 5ðlbftÞ2
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Figure 7. Antenna rotation at z0 during a 308 maneuver.
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ð0�4781 kgf mÞ which are indirectly comparable to the results of reference [10]. They used
either distributed force actuators or 10 discrete force actuators in controlling the vibration
of the mast instead of using torque wheel actuators as noted in this paper. Each C:E: is for
the entire operational effort.
Figures 10 and 11 are time-lapse plots of the spacecraft during the 308 roll maneuver

with a plotting sampling time of 0�5 s. In the deformation plot, a scale factor of 10 is used
to amplify the deformation for the plotting purpose. The view is from directly behind the
spacecraft, showing the y0z0 plane with the x0-axis directed into the paper. In each plotting
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sampling time, two plots appear, one is a dashed line representing the structure as if it is
rigid, and the other is a solid line representing the deformed structure. Due to the tracking
control strategy, the initial and ending oscillations in both cases appear to be similar. The
mast continues to oscillate during the entire activity in the case of the input shaping
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technique. However, in the tracking control (a) case, the mast is initially behind its
undeformed position and then it bounces forward to precede to the desired configuration.
During the coasting stage and at the end of the maneuver, the vibration of the mast is not
noticeable.
In the 308 maneuver with a maximum angular velocity below 58=s as shown in Figure 4

and the maximum applied torque 10 lbftð0�9562 kgfmÞ on the shuttle as shown in Figure 3,
the time-varying effect of the system dynamics is relatively small.
The tracking control (a) is tested for the zero damping case Cr ¼ 0i	i with the same

design parameters as noted in Table 1. It turns out that the residual vibration of the mast
exists at the end of the 308 slewing maneuver. However, the maximum vibration amplitude
is below 0�028 which is the control objective of the SCOLE operation. It appears that the
overall performance of the ESMC is similar to the non-zero damping case.

5. CONCLUSIONS

The ESMC is developed for a linear stochastic system with a known disturbance. The
error states are determined using a Kalman filter to define the number of sliding
hypersurfaces. The number of controller poles results from the thickness of the boundary
layers and the remaining poles for the entire states are determined by the sliding
hypersurface selection. The ESMC minimizes the expected value of a guadratic objective
function composed of error states which always remain in the intersection of sliding
hypersurfaces with respect to the remaining poles.
In a numerical simulation with the SCOLE model, the ESMC is modified due to the

maneuvering of the rigid-body and combined with the ideal tracking model and the input
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shaping technique for economical performance reasons. The first-mode tracking strategy is
shown to be more efficient than the rigid-body motion strategy. With three torque wheel
actuators and three displacement sensors and three velocity sensors at the mast-tip, the
large angle maneuver is successfully accomplished without significant residual vibrations.
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